
64 The Delphi Magazine Issue 58

The Delphi
CLINIC

Edited by Brian Long

Problems with your Delphi project?

Just email Brian Long, our Delphi
Clinic Editor, on clinic@blong.com

procedure WriteStringToStream(const S: String; Stream: TStream);
var StrLen: Cardinal;
begin
StrLen := Length(S);
Stream.Write(StrLen, SizeOf(StrLen));
if StrLen > 0 then
Stream.Write(S[1], Length(S))

end;
function ReadStringFromStream(Stream: TStream): String;
var StrLen: Cardinal;
begin
Stream.Read(StrLen, SizeOf(StrLen));
SetLength(Result, StrLen);
if StrLen > 0 then
Stream.Read(Result[1], StrLen);

end;

➤ Listing 1: Routines for dealing with strings in streams.

Strings And Streams

QI get the impression that
TStream objects should be

used where possible, so I’d like to
read and write to a text file using a
TFileStream. However, I cannot see
how I can read from the file as the
Read procedure must know in ad-
vance how long the string is to be
read. All the examples I have seen
show writing strings only. It is easy
reading/writing using the old pro-
cedures ReadLn and WriteLn.

AStream objects are useful in
that they provide a uniform

interface to a variety of storage me-
dia, but there’s no need to use
them all the time. In fact, a text file
is probably a good case to not use a
stream. All data written to a text file
is translated into a series of charac-
ters. The Read, ReadLn, Write and
WriteLn routines in conjunction
with a text file variable are well set
up to deal with this arrangement.

Other files, where for example
numerical information is stored in
binary form, may be better suited
to stream access. This is because
the memory buffer that you write
to a stream will be stored in the
stream in the same binary format.

However, it is common to store
text information alongside binary
data in binary files, and so the
question still highlights a problem.
How are strings best written to
streams to aid reading them back
again, given that the stream read
method needs to know how many
bytes to read with each operation?

My answer would be to write the
string length first, followed by the
string data. 32-bit Delphi strings
can contain potentially up to 2Gb
of text, so the string length is a four-
byte value. A pair of helper rou-
tines to read a string from a stream
and write a string to a stream are
shown in Listing 1.

You can see that the length of the
string and the string data itself are
dealt with separately in both cases.
It is also important that the code
checks if there are any characters
in the string before trying to access
them. If an empty string is passed
in, an attempt to access the first
character of the string would likely
cause an Access Violation, as no
memory would have been allo-
cated for the characters.

When reading, the string length
is read first and is used to set the
length of the string, thereby allo-
cating enough space for it. Then
the string length is used to specify
how many further bytes to read
from the stream, if any.

Listing 2 shows how to write the
contents of one edit control to a
memory stream, then read it back
into another edit control.

Optimised Working Set

QI have noticed that when I
minimise my application on

Windows NT, the Task Manager

shows a significant reduction in
memory usage. I don’t know how
or why this happens, but am I able
to get the same effect using code in
my application, for example in a
timer’s event handler?

AThis is indeed possible. In
fact it has been discussed in

The Delphi Magazine in Issue 39
(November 1998). In his article
Slimming The Fat Off Your Apps
Hallvard Vassbotn passed on Roy
Nelson’s tip of calling the Set-
ProcessWorkingSetSize API in your
project source file, to minimise
your application’s working set
after all the units have initialised.

However, there is nothing stop-
ping you calling the API regularly
throughout the lifetime of your
application, if you want to keep its
memory consumption in check. A
timer can be used for the job, with
the Interval property set to a high
value, such as 10,000 or 30,000, to
trigger the OnTimer event every 10
or 30 seconds as you prefer. The
call in the event handler would

procedure TForm1.Button1Click(Sender: TObject);
var S: TStream;
begin
S := TMemoryStream.Create;
WriteStringToStream(Edit1.Text, S);
S.Position := 0;
Edit2.Text := ReadStringFromStream(S);
S.Free

➤ Listing 2: Reading/writing strings from/to streams.

66 The Delphi Magazine Issue 58

look something like Listing 3.
GetCurrentProcess returns a handle
to the currently executing process,
whilst the values of $FFFFFFFF
request the minimum possible
working set.

Note that the API only has an
effect on Windows NT and 2000. In
Windows 9x it is implemented but
just calls SetLastError(ERROR_CALL_
NOT_IMPLEMENTED). Listing 3 avoids
calling the two APIs if the code is
not running on a suitable platform.

Hallvard mentioned in his article
that you can trim the working set of
the IDE, by adding a suitable unit to
a package that calls SetProcess-
WorkingSetSize just after start up. If
you wished you could set up a
timer in the packaged unit that
repeatedly trims the working set
every 30 seconds. Such a unit
might look like Listing 4. This unit
can be added to an IDE package to
keep the IDE working set trimmed,
or can be added to any normal
application project to keep that
application’s working set trimmed.

On my Windows 2000 machine,
Delphi starts up having used nearly

14Mb of memory, which rapidly
goes up to 18Mb with a small com-
pilation. With the unit installed to
trim the working set every 30 sec-
onds, the memory usage is regu-
larly chopped back down to less
than 3Mb. Quite an improvement,
I’m sure you will agree.

Copying Selected Text
Between TRichEdit Controls

QI want to copy the selected
text from one rich edit

control to another rich edit
control, without using the
clipboard. I tried:

dstRichEdit.Lines.Text :=
srcRichEdit.SelText;

but this copies the selected text
without formatting. How can I get
the formatting as well without
destroying what is already on the
clipboard?

AIn my article TRichEdits And
Embedded Objects in Issue

52, I discussed how rich edit con-
trols can make use of the IRich-
EditOleCallback interface in order
to support embedded OLE objects.
This interface is not defined in the
units supplied with Delphi (at least
up to version 5), so I had to define it
myself. The original C++ definition
of the interface comes from a
header file RichOLE.h, which has
no equivalent in Delphi’s import
units. Once you define the inter-
face, you can implement it in an
object and pass a reference to it to
the rich edit control with the
EM_SETOLECALLBACK message.

Another interface defined in that
header that is consequently not
defined in Delphi is IRichEditOle.
This interface can be used to help
answer this question and so, again,
we will need a Delphi definition of
it. This month’s disk contains a
unit called RichOle.pas that con-
tains the IRichEditOleCallback and
IRichEditOle interfaces, along with
some constants and types used by
the parameters of the interface
methods (see Listing 5).

Having now got a definition of
IRichEditOle, what does it allow us
to do? Well to start with, the rich

edit control already implements
this interface, so we need to ask
the control for a reference to it
with the EM_GETOLEINTERFACE
message. Once we have access to
the interface, two key methods
will be used to help answer our
question: GetClipboardData and
ImportDataObject.

When applications support both
the Windows clipboard and inter-
application OLE-based drag and
drop, they represent shareable
data by way of a data object (repre-
sented by the IDataObject inter-
face). The data object can manage
data in a variety of formats stored
in a variety of storage media.

For example, when Microsoft
Word copies some text into the
clipboard, it first gives the data (in
a number of formats) to a data
object. This data object is then
effectively placed in the clipboard.
When you drag some text from
Microsoft Word to another appli-
cation, it again gives the data to a
data object to maintain.

The IRichEditOle interface
allows us to get a data object repre-
senting any range of text in the rich
edit control using its GetClipboard-
Data method. This returns a refer-
ence to an IDataObject interface
that represents the requested
data. Note that this data object is
not given to the clipboard (though
it could be) but is merely returned
from the method call.

Having got the data object repre-
senting some text (and formatting)
in the source rich edit, we now
need to get it into the destination
rich edit. This can be done by get-
ting access to the destination rich
edit’s IRichEditOle interface and
passing the data object to its
ImportDataObject method. The
destination rich edit will absorb all
the data from the data object and
the job will be done.

OK, enough preamble. Let’s get
on with it. RichEditCopying.dpr is
a sample project on this month’s
disk. It has a source and destina-
tion rich edit (reSrc and reDest
respectively), along with a button
that copies the source rich edit
selection to the destination rich
edit. The button’s OnClick event
handler is shown in Listing 6.

if Win32Platform =
VER_PLATFORM_WIN32_NT then
SetProcessWorkingSetSize(
GetCurrentProcess, $FFFFFFFF,
$FFFFFFFF)

➤ Listing 4: Trimming the IDE’s
working set.

➤ Listing 3: Keeping your
working set trimmed.

unit TrimWorkingSet;
interface
implementation
uses
SysUtils, Windows, ExtCtrls;

type
TTrimmer = class(TTimer)
public
procedure TimerTick(
Sender: TObject);

end;
procedure TTrimmer.TimerTick(
Sender: TObject);

begin
if Win32Platform =
VER_PLATFORM_WIN32_NT then
SetProcessWorkingSetSize(
GetCurrentProcess, $FFFFFFFF,
$FFFFFFFF)

end;
var Timer: TTrimmer;
initialization
Timer := TTrimmer.Create(nil);
Timer.Interval := 30000;
Timer.OnTimer := Timer.TimerTick;

finalization
if Assigned(Timer) then
Timer.Free;

end.

68 The Delphi Magazine Issue 58

The first step is to get the source
rich edit’s OLE interface. If this is
successful, the selected text in the
source rich edit is recorded in a
TCharRange record variable, which
needs starting and ending charac-
ters. The rich edit’s SelStart and
SelLengthproperties are used to fill
in the record fields.

The next step is to ask for a data
object that represents information
being copied from the source rich
edit control (rather than being cut,
for example). If the data object is
returned it needs to be passed to
the destination rich edit. To do
this, we need the destination rich
edit’s OLE Interface. If it is returned
without problem, the data object is
passed in to the ImportDataObject
method. Figure 1 shows the pro-
gram running, where a selection
has just been copied across.

You can see a more in-depth use
of data objects in my Dragging And
Dropping article in this issue.

Rich Text To Microsoft Word

QI have an app where I am
saving some rich text data

entered via a TDBRichEdit field. I

want to transfer it to Microsoft
Word, but am having difficulty get-
ting it to work correctly. I’ve tried
passing the field’s AsText property
to the appropriate Word method,
but I get the raw RTF showing, with
all the curly brackets and tags.
Next, I tried copying the field to the
clipboard, by assigning the field’s
AsText property to the ClipBoard
object’s AsText property. The goal
was to paste the RTF data into the
Word document by using Word’s
PasteSpecial method, specifying
RTF format. This idea was
thwarted because it reported that
the format was not available. Am I
missing something obvious?

AI am no expert with Word,
so I don’t know if there is a

simple way of achieving this
directly, but I can show you how
to do it using the clipboard.
Clearly, if the application copies

data to the clipboard, then pastes
that data into Word, any data
placed in the clipboard by the user
will be lost. Without using a
temporary file (which I feel would
be slower), I can’t think of a way of
avoiding the clipboard. Assuming
this disadvantage is not a problem,
let’s look at what needs to be done.

Firstly, you need to get a data
object representing the RTF data
from the rich edit that you want
copied. This can be done in exactly
the same way as in the previous
Delphi Clinic entry. The only differ-
ence is that all the text from the
source rich edit needs to be copied
this time. To indicate this the
TCharRange record is given a mini-
mum character position of 0 and a
maximum of -1.

To allow Word to paste RTF from
the clipboard, the data object
must be given to the clipboard.

type
// Structure passed to GetObject and InsertObject
TREObject = record
cbStruct: DWord; // size of structure in bytes
cp: Longint; // character position of object
ClsID: TClsID; // class identifier of object
pOleObj: IOleObject; // OLE object interface
pStg: IStorage; // associated storage interface
// associated client site interface
pOleSite: IOleClientSite;
sizel: TSize; // size of object (may be 0,0)
dvaspect, // display aspect to use
dwFlags, // object status flags
dwUser: DWord; // user-defined value

end;
IRichEditOle = interface
['{00020D00-0000-0000-C000-000000000046}']
procedure GetClientSite(
out lplpOleSite: IOleClientSite); stdcall;

function GetObjectCount: Longint; stdcall;
function GetLinkCount: Longint; stdcall;
function GetObject(iObj: Longint; out reobject:
TREObject; dwFlags: DWord): HResult; stdcall;

function InsertObject(const reobject: TREObject):
HResult; stdcall;

function ConvertObject(iObj: Longint; const clsidNew:
TClsId; lpStrUserTypeNew: lpCStr): HResult; stdcall;

function ActivateAs(const clsId, clsIdAs: TClsId):
HResult; stdcall;

function SetHostNames(lpstrContainerApp,
lpstrContainerObj: lpCStr): HResult; stdcall;

function SetLinkAvailable(iObj: Longint; fAvailable:
Bool): HResult; stdcall;

function SetDvaspect(iObj: Longint; dvaspect: DWord):
HResult; stdcall;

function HandsOffStorage(iObj: Longint): HResult;
stdcall;

function SaveCompleted(iObj: Longint; stg: IStorage):
HResult; stdcall;

function InPlaceDeactivate: HResult; stdcall;
function ContextSensitiveHelp(fEnterMode: Bool):
HResult; stdcall;

function GetClipboardData(const chrg: TCharRange; reco:
DWord; out dataobj: IDataObject): HResult; stdcall;

function ImportDataObject(dataobj: IDataObject; cf:
TClipFormat; hMetaPict: HGlobal): HResult; stdcall;

end;

➤ Listing 5: The IRichEditOle
interface. procedure TForm1.Button1Click(Sender: TObject);

var
reoSrc, reoDest: IRichEditOle;
DataObj: IDataObject;
CharRange: TCharRange;

begin
//Copies text but not formatting
// reDest.Lines.Text := reSrc.SelText;
//Copies text and formatting, but uses the clipboard
// reSrc.CopyToClipboard;
// reDest.PasteFromClipboard;
//Copies any range, with formatting, and
//without destroying the clipboard contents
reSrc.Perform(EM_GETOLEINTERFACE, 0, LParam(@reoSrc));
if Assigned(reoSrc) then begin
CharRange.cpMin := reSrc.SelStart;
CharRange.cpMax := reSrc.SelStart + reSrc.SelLength;
reoSrc.GetClipboardData(CharRange, RECO_COPY, DataObj);
if Assigned(DataObj) then begin
reDest.Perform(EM_GETOLEINTERFACE, 0, LParam(@reoDest));
if Assigned(reoDest) then
reoDest.ImportDataObject(DataObj, 0, 0);

end
end

end;

➤ Listing 6: Using a data object
to copy information between
rich edits.

➤ Figure 1: Copying a rich
edit selection.

June 2000 The Delphi Magazine 69

This is done by passing it to the
OleSetClipboard function. Assum-
ing the clipboard is not being held
open by an application, this func-
tion should return a successful
HResult value.

Now that the data object is in the
clipboard, the content of the rich
edit control can be accessed from
the clipboard in various ways,
including unformatted text and
formatted text (RTF).

Automation can then be used to
connect to Word and get the clip-
board data pasted into a
document. You can see all this
happening in Listing 7, from the
RichEditCopying2.dpr project (the
same as RichEditCopying.dpr but
with an extra button to copy the
entire content of the source rich
edit to Word via the clipboard).

After the Automation code, a
try..finally statement ensures
that some form of tidying up is
done. Assuming the data object is
still on the clipboard (checked by
OleIsCurrentClipboard), the user is
asked if they want the data
represented by the data object left
in the clipboard. This is much the
same as when you close Word. If it
feels there is some non-trivial data
on the clipboard it asks if you want
to keep it there or clear it (see
Figure 2).

To clear the clipboard, the code
passes nil to OleSetClipboard. To
leave the data on the clipboard,
but remove the data object main-
taining the data, you call Ole-
FlushClipboard. This allows the
program to be terminated, but still
leaves the data available in all its
formats for more paste operations.

API problem

QI am worried about the Wait-
ForSingleObject API. I use it

to detect when a launched process
terminates by waiting for the pro-
cess handle to become signalled. A
process handle becomes signalled
when the corresponding process is
terminated. The problem occurs
with just a few applications includ-
ing Microsoft Paint (PBrush.exe)
and Windows Explorer. I launch
them, they start running, and
WaitForSingleObject immediately
reports that the process handle
has become signalled. I don’t know
how to find out what is wrong. Can
you help?

AThis one certainly looks con-
fusing at first. A sample pro-

ject called AppLauncher.dpr on
the disk reproduces this problem.
It uses a utility routine based on
those shown in the CreateProcess
Alert entry from The Delphi Clinic
in Issue 51. The RunCommand routine
is shown in Listing 8.

As well as the command-line
string and parameters, the routine
takes references to two param-
eterless procedure methods. The
first is called immediately after
launching the application, whilst
the second is called when the
launched application terminates.

To make it easy to see what hap-
pens, I decided to minimise the
application launcher after starting
the secondary program. When the
launched program terminates, the
application restores itself. The
reason for minimising the
application is that the calling
thread is frozen by a call to
WaitForSingleObject until either
the relevant object becomes
signalled or the wait operation
times out. This leads to a hung user
interface. Minimising first means
this UI problem is effectively
masked from the user.

Methods already exist in the
Application object to minimise
and restore the application, and it
so happens that both methods are
parameterless procedure meth-
ods. This means I can pass refer-
ences to these methods when I call
RunCommand, thereby saving me the
trouble of setting up new methods
and passing references to those
(see Listing 9).

As mentioned, if you use this
application to launch either
PBrush.exe or Explorer.exe, the
application will minimise and then

procedure TForm1.Button2Click(Sender: TObject);
var
reoSrc: IRichEditOle;
DataObj: IDataObject;
CharRange: TCharRange;
MSWord: Variant;

const
wdPasteRTF = 1;

begin
reSrc.Perform(EM_GETOLEINTERFACE, 0, LParam(@reoSrc));
if Assigned(reoSrc) then begin
CharRange.cpMin := 0; //Select all text
CharRange.cpMax := -1;
//Place data object for rich edit content on clipboard
reoSrc.GetClipboardData(CharRange, RECO_COPY, DataObj);
OleCheck(OleSetClipboard(DataObj));
try
try
MSWord := GetActiveOleObject('Word.Application');

except
MSWord := CreateOleObject('Word.Application');

end;
MSWord.Visible := True;
MSWord.Documents.Add;
MSWord.Selection.PasteSpecial(DataType := wdPasteRTF)

finally
if OleIsCurrentClipboard(DataObj) = S_OK then
if MessageDlg('Leave RTF data on the clipboard?',
mtConfirmation, [mbYes, mbNo], 0) = mrYes then
OleCheck(OleFlushClipboard)

else
OleCheck(OleSetClipboard(nil))

end
end

end;

➤ Listing 7: Copying RTF text
into Word via the clipboard.

➤ Figure 2: Copying rich text to
Microsoft Word.

70 The Delphi Magazine Issue 58

immediately restore itself, despite
the fact that the launched program
(Paint or Explorer) is still running.
Figure 3 shows the application
launcher just after launching Paint:
you can see it has restored itself.

So what is the problem? I tried
looking for problem reports on
WaitForSingleObject on the MSDN
CD, but found WaitForSingleObject
has no problem waiting for process
handles to become signalled.

Next, I tried using the file access
monitor from www.sysinternals.
com. I started it before launching
the application and observed the
information that it produced. This
showed the problem immediately.

Let’s take Microsoft Paint first.
To run the application, you run
PBrush.exe. However, PBrush.exe
is not Microsoft Paint, but is a triv-
ial application in the Windows
directory whose sole task is to
launch a copy of Paint, which is in
fact in MSPaint.exe, which lives in
C:\Program Files\Accessories,
with WordPad. So, when you
launch PBrush.exe, it will start up,
launch a copy of MSPaint.exe, and

then terminate, thereby making its
process handle become signalled.

The situation is similar with
Explorer. When you run a new
copy of Explorer it checks to see if
it is already running. Since it
definitely will be (Windows
Explorer acts as the Windows shell
as well as a file browser), the new
copy of Explorer communicates
with the already running version,
tells it what it needs to do, then
terminates. The Explorer window
that gets displayed comes from the
original copy of Explorer (the Win-
dows shell). So the freshly
launched second copy of Explorer
terminates immediately, and its
process handle becomes signalled.

You will need to test these things
whilst developing your application
to ensure that the applications you
launch actually stay running. If
they don’t, more investigation may
be necessary, and possibly alter-
native strategies devised. For
Paint, the solution is to launch
MSPaint.exe not PBrush.exe.

For Explorer, the job is more
difficult. You’ll need to identify
the window that gets launched
using FindWindow and EnumWin-
dows. Before launching Explorer
you should get a list of all existing
windows, using EnumWindows.

After Explorer terminates you
should make another list and con-
centrate on the new additions.
FindWindow can verify whether the
window still exists.

ActiveForm Destruction

QI’ve been creating Active-
Forms in Delphi and have a

question about when these are be-
ing freed. I added a simple Show-
Message call to the ActiveForm’s
OnDestroy event to show when it
was being triggered. However, the
message never appears when the
control is used, either on a web
page or from within another Delphi
app. I had assumed that when a
control was used on a web page,
the browser would destroy it when
no longer required. I also assumed
the control would be destroyed
when a Delphi form hosting the
control was freed. Is this ActiveX
control not being destroyed or
should I do something differently?

AMy initial response to this
question, whilst valid in its

content, turned out to be unre-
lated to the problem upon investi-
gation. I thought the call to Show-
Message was the root of the prob-
lem. As I described in the Active
OLE Object entry in The Delphi
Clinic from Issue 46, if the applica-
tion is in the process of being
terminated (and therefore Appli-
cation.Terminated is True) modal
forms will not display. The imple-
mentation of ShowModal checks the
property and skips out if it is to be
True. Calls like ShowMessage and
MessageDlg are based on modal
forms, so will not display if the
application is terminated.

Whilst this is true, it has nothing
to do with this problem. Calls
to Application.MessageBox in

type
TWaitProc = procedure of object;
TBeforeWaitProc = TWaitProc;
TAfterWaitProc = TWaitProc;

procedure RunCommand(const Cmd, Params: String;
BeforeWait: TBeforeWaitProc; AfterWait: TAfterWaitProc);

var
SI: TStartupInfo;
PI: TProcessInformation;
CmdLine: String;

begin
FillChar(SI, SizeOf(SI), 0);
SI.cb := SizeOf(SI); //Set mandatory record field
//Ensure Windows mouse cursor reflects launch progress
SI.dwFlags := StartF_ForceOnFeedback;
CmdLine := Cmd; //Set up command line
if Length(Params) > 0 then CmdLine := CmdLine+#32+Params;
//Try and launch child process. Raise exception on failure
Win32Check(CreateProcess(nil,PChar(CmdLine),nil,nil,False,0,nil,nil,SI,PI));
try
//Wait until process has started its main message loop
WaitForInputIdle(PI.hProcess, Infinite);
if Assigned(BeforeWait) then BeforeWait;
WaitForSingleObject(PI.hProcess, Infinite);
if Assigned(AfterWait) then AfterWait;

finally
CloseHandle(PI.hThread);
CloseHandle(PI.hProcess);

end
end;

➤ Listing 8: A command-line executor.

procedure TForm1.btnLaunchClick(
Sender: TObject);

begin
RunCommand(edtCommand.Text,
edtParams.Text,
Application.Minimize,
Application.Restore)

end;

➤ Listing 9: Launching programs.

➤ Figure 3: The application
launcher thinks Paint has
terminated.

72 The Delphi Magazine Issue 58

an OnDestroy event handler are also
ignored, despite it not using Delphi
modal forms. The problem actually
lies rather deeper.

When you’re creating an Active-
Form, it presents itself in the Form
Designer just like a normal form.
There are a number of events avail-
able on the Object Inspector’s
Events page but some of them need
to be avoided (see below).

Some of the events are repre-
sented by entries in an events
interface that you’ll find in the
Type Library editor. Any host
program can implement that
events interface, thereby making
itself an event sink, and should be
notified when the relevant events
fire in the ActiveForm control.

Table 1 shows how an Active-
Form deals with each of the events
it publishes. As you can see, the
ActiveForm code in the unit gener-
ated by the wizard sets several
event handlers (such as OnClick
and OnDblClick) to specific meth-
ods that exist in the class. This is
done in the implementation of the

Initialize method. Those meth-
ods check to see if the host applica-
tion has set up an event sink for the
events interface (which includes
each of the events that are explic-
itly set up). Assuming it has, the
host event is triggered.

This works fine for most of the
events except OnCreate and OnDest-
roy. The OnCreate event will have
already fired in the ActiveForm
before Initialize executes and
sets up the method that triggers
the event in the host. It is therefore
pointless setting up an OnCreate
event handler in the host applica-
tion. You should set it up in the
ActiveForm itself.

Also pointless is surfacing the
OnDestroy event handler to the
host. By the time the OnDestroy
event is triggered (as the
ActiveForm is being destroyed),
the host application will have dis-
connected its event sink from the
ActiveForm. Consequently, the
method in the ActiveForm that
checks to see if there is an event
sink for its events interface will not

find one. An OnDestroy event han-
dler in the host application will
therefore not fire. Also, the
OnDestroy event in the ActiveForm
gets overwritten by the Initialize
method, so it is not sensible to set
an event handler there either.

From this, it seems you cannot
have an operative OnDestroy event
handler for an ActiveForm. Also,
an OnCreate event handler must be
set up in the ActiveForm, not in the
host application. This implies that
neither OnCreate nor OnDestroy
should be in the events interface of
an ActiveForm. I’ve reported this
incorrect behaviour to Inprise.

The final point to make is that
despite OnDragOver and OnDragDrop
not being part of the events inter-
face, these events still fire in the
client (rather than the Active-
Form). However, this is really due
to the VCL class used to represent
an imported ActiveX. TOleControl
defines OnDragOver and OnDragDrop.
So, when your ActiveForm is
imported into another develop-
ment tool you will probably not get
these events.

ActiveForm
Event

Behaviour Of
An ActiveForm

Where
Event
Handler
Executes

OnActivate Overwrites event to
trigger it in the host

Host

OnClick Overwrites event to
trigger it in the host

Host

OnContextPopup Leaves event untouched ActiveForm

OnCreate Overwrites event to
trigger it in the host

ActiveForm

OnDblClick Overwrites event to
trigger it in the host

Host

OnDeactivate Overwrites event to
trigger it in the host

Host

OnDestroy Overwrites event to
trigger it in the host

Nowhere

OnDragDrop Leaves event untouched Host

OnDragOver Leaves event untouched Host

OnKeyDown Leaves event untouched ActiveForm

OnKeyPress Overwrites event to
trigger it in the host

Host

OnKeyUp Leaves event untouched ActiveForm

OnMouseDown Leaves event untouched ActiveForm

OnMouseMove Leaves event untouched ActiveForm

OnMouseUp Leaves event untouched ActiveForm

➤ Table 1: ActiveForm events and where they fire.

	Strings And Streams
	Optimised Working Set
	Copying Selected Text Between TRichEdit Controls
	Rich Text To Microsoft Word
	API problem
	ActiveForm Destruction

